ZRA-BPGVFPP2变频电缆36.8欧姆电阻

所在地: 安徽省 滁州市
发布时间: 2024-11-23
详细信息

而从上述分析可看出:应用在变频器输出电路的IGBT管子,恰恰应该说是电流或说是功率驱动器件,而不纯为电压控制器件。二、装机前后一个检测内容:

为大可能地降低返修率,在对驱动电路进行三、四节的检测后,不要漏过对驱动电路的带负载能力这样一个检查环节。

DVP-122kW台达变频器的U相上臂的驱动电路。图中GU、EU为脉冲信号输出端子,外接IGBT的G、E极,检修驱动板时已与主电路脱离。虚线框内为外加测量电路。为电源/驱动板上电后,配合启动和停止操作,在m、n点串入直流250mA电流档,与15Ω3W的外加测量电阻构成回路,检测各路驱动电路的电流输出能力,测得启动状态,有五路输出电流值均在150mA左右,其中一路输出电流仅为40mA,装机运行后跳OC的故障原因正在于此,该路驱动电路的驱动能力大大不足!停机状态,测得各路负电压供电的电流输出能力均为50mA左右,负压供电能力正常。

串接RC,起到限流作用,其取值的原则:选取电阻值及功率值与栅极电阻相等(上图中DR45的参数值),以使检测效果明显。

对驱动电路做过功率输出能力的检测,可以确定驱动电路完全正常了。在驱动电路与主电路连接的试机过程中,请先以低压24V直流电源为逆变电路供电,测试驱动电路和逆变电路正常后,再恢复逆变回路的正常供电。如手头无低压直流电源,起码应在逆变供电回路串接两只45W灯泡或2A保险管,试机正常后,才接入逆变电路的原供电!

上述对驱动电路的上电检测,是在脱开与主电路(IGBT)的连接后进行的,整机连接状态下,不得测量驱动电路的输入、输入侧,会因人体感应和表笔引入干扰信号,使IGBT受触发误码导通,造成模块的炸裂!

驱动电路输出能力的不足,由以下两方面的原因造成:

A、电源供电能力不足,空载情况下,我们检测输出正、负电压,往往达到正常的幅度要求,即使带载(如接入IGBT后)情况下,虽然对Cge的瞬时的充电能力不足,但因充电时间太短,我们往往也测不出供电电压的低落,不带上电阻负载,这种隐蔽故障几乎不能被检测出来!电路电路的常见故障为滤波电容失容,如上图中DC41,因长期运行中电解电容内部的电解液干涸,其容量由几百微法减小为几十微法,甚至为几微法。另外,可能有整流管低效,如正向电阻变大等,也会造成电源输出能力不足;B、驱动IC内部输出电路不良或后置放大器DQ4、DQ10导通内阻变大等。如带载后检测电源电压无低落现象,检测T250输出电压偏低,则为T250不良,否则更换DQ4、DQ10等元件。DR40、DR45等阻值变大的现象比较少见。

需要说明的是:正向激励电压的不足,只是表现出电机振动剧烈、输出电压偏相、频繁跳OC故障等现象,虽然有可能使电机绕组中产生直流成分出现过流状态,但对模块构不成一投入运行信号即爆裂的危害。而负向截止电压的丢失(负压供电回路的故障造成负栅偏压回路阻断),则表现出上电时正常,一按动启动按键,IGBT逆变模块便会发出“啪”的一声马上爆裂的故障!这是为何呢三、IGBT截止负压丢失后的危害:

除了在全速运行下负载突然短路造成的损坏外,过流、过载、过欠压等,所有故障的危害性都要远远小于栅偏压回路开路对IGBT的危害,说到这一点,广大维修人员都会深有体会的——维修人员吃这样的不应该吃的亏是太多了啊。检修过程中漏焊了栅极电阻DR45,在装机过程中粗心大意间只插好了上臂IBGT1的触发插头,而忘记了连接下臂IGBT触发端子,而使IGBT2驱动信号引入端子被空置,上电后,不投入起动信号,还没有问题,一旦投入启动信号,那就毫无商量,模块坏掉。长期的维修工作中,我已经养成了一个习惯:上电后启动操作前先停一会儿,观察一下驱动脉冲输出端子是否已经连接完好。检查每路都连接完好后,再按下启动按键。我常常觉得这轻轻的一点有千钧之重啊——驱动电路与逆变输出电路都是正常的状态下,只漏插了一只驱动脉冲的信号端子,必会造成IGBT模块与驱动电路的再次严重损坏,致使前功尽弃呀!

如同双极性器件——三极管一样,三线元件也必然形成了内部三只等效电容,

而IGBT内部的Cge却不是寄生性的,是工艺与结构所形成。Cce电容我们不要去管它。对IGBT能起到毁灭性作用的是Ccg和Cge两只电容

联系方式
返回展厅